ICSE Questions & Answers: Maths - Trigonometric Identities
1. Prove the standard identity sec2θ - tan2θ = 1 by using sin2θ + cos2θ = 1?
LHS = sec2θ - tan2θ
= 1/cos2θ - sin2θ/cos2θ
= (1 - sin2θ)/cos2θ
= cos2θ/cos2θ
= 1
2. Prove that: sin4θ + cos4θ = 1 - 2sin2θcos2θ
We know sin2θ + cos2θ = 1
Squaring both sides
(sin2θ + cos2θ)2 = 12
sin4θ + 2sin2θcos2θ + cos4θ = 1
sin4θ + cos4θ = 1 - 2sin2θcos2θ
3. Prove: cos2θ(1 + tan2θ) = 1
LHS = cos2θ(1 + tan2θ)
= cos2θ(sec2θ)
= cos2θ (1/cos2θ)
= 1 = RHS
4. Prove: (1 - tan A)2 + (1 + tan A)2 = 2 sec2A
LHS = (1 - tan A)2 + (1 + tan A)2
= (1 - 2tan A + tan2A) + (1 + 2tan A + tan2A)
= 2 + 2tan2A
= 2(1 + tan2A)
= 2 sec2A
= RHS
5. Prove: tan2x(1 + cot2x) = 1/(1 - sin2x)
LHS = tan2x(1 + cot2x)
= tan2x + tan2x cot2x
= tan2x + tan2x (1/tan2x)
= tan2x + 1
= sec2x
= 1/cos2x
= 1/(1 - sin2x) = RHS